
3D Raytrace Algorithm

September 28, 2020

1 Introduction

The purpose of this algorithm is to be able to accurately replicate the trajectory of photons through an im-
ploding ICF (Inertial Confinement Fusion) capsule, as simulate using the ALE Radiation-Hydrodynamics
code, Odin. The program takes the density profile, as output by Odin, and calculates a refractive index,
η profile, using the following equation:

η =

√
1 − ne

ncrit
(1)

where ne is the electron number density, and ncrit is the critical density, given by:

ncrit =
ε0meω

2

e2
(2)

where ε0 is the vacuum permittivity constant, m is the electron rest mass, ω is the angular frequency
of the probing laser, and e is the electron charge. Note that, since ω = 2πν, we can re-write the above
equation as a function of the laser frequency ν, or wavelength λ:

ncrit =
4π2ε0meν

2

e2
=

4π2ε0mec
2

(eλ)2
(3)

Upon reaching the critical density, the laser is reflected away from the center of the plasma. From this
equation, we can see that, lasers of higher frequency/smaller wavelength can reach higher densities and
penetrate further into the plasma.

The critical density denotes, the maximum number density that a probing laser of angular frequency
ω can penetrate at an angle of incidence of 0◦. In order to account for the angle of incidence, θ0, of the
laser, one must use the following equation:

nturn = ncrit cos2 θ0 (4)

As the laser travels further into the plasma, is is travelling through denser material. As a result of this,
it is refracted more, and will have a parabolic trajectory throughout the plasma. The angle of trajectory
of the ray is determined by Snell’s Law:

sin θ2
sin θ1

=
η1
η2

(5)

1

2 The Algorithm

The program begins by reading in the data from the Odin output. It reads in the density and grid points
of the simulation and then calculates the refractive index as described in equations (1) and (2). Since,
the critical density is a function of the laser frequency, λ. This remains as a changeable parameter for
the user in order to account for different diagnostics. For the initial diagnostic, X-ray radiography, we
will use a wavelength in the order of nanometers as is characteristic of X-rays.

Having loaded the grid and refractive index profile, we can now set the initial conditions for the ray.
For this, we have to decided on an initial radius, angle of incidence and angle of location, in both the
θ and φ directions. Now we position the ray on our grid by performing a scan through the coordinates.
First, we scan in the θ-direction, as shown in the image below:

Figure 1: A graphical depiction of the locating algorithm in the Raytracing program. Here we see the
algorithm identifying the θ value of the initial position of the ray to be between 24◦ and 36◦.

Afterwards, the program scans in the R direction as shown below:

Figure 2: A graphical depiction of the locating algorithm in the Raytracing program. Here we see the
algorithm identifying the R value of the initial position of the ray to be between 9.75 and 10 (arbitrary
units).

In 3D, the algorithm has to repeat this in the φ direction as well:

2

Figure 3: A graphical depiction of the locating algorithm in the Raytracing program. Here we see the
algorithm identifying the φ value of the initial position of the ray to be between 18◦ and 36◦.

Having found the location of the ray within the grid, the algorithm can determine the refractive index
value for this cell. Afterwards, it calculates the nearest cell vertice it will cross, in either R, φ, and θ
direction. In order to determine which cell edge is nearer, the algorithm needs to calculate all three of
the distances. This principle is shown in the Figure below:

Figure 4: A schematic depiction of the algorithm calculating the distance/timestep until the ray crosses
the next x or y vertice. The algorithm will chose the smaller of the two values.

I will now discuss the distance/time calculations needed for the ray crossing each vertice.

2.1 2D θ crossing

The Odin grid has θgrid values which extend over a circle/sphere. Therefore it has values in the range
[−π,π]. These values can be considered as gradients:

mθ = tan θgrid (6)

Note that θgrid describes the angle of the photon with respect to the capsule, and θtraj is the angle of
the photon’s trajectory. We start our derivation by stating that:

x = x0 ± cdt cos θtraj (7)

y = y0 ± cdt sin θtraj (8)

3

Now we consider the gradient of the grid, mθ:

mθ =
y

x
=
y0 ± cdt sin θtraj
x0 ± cdt cos θtraj

(9)

Solving for dt, we get something of the form:

dt =
y0 ±mx0

c(m cos θ ± sin θ)
(10)

2.2 2D R crossing

Using the definitions of x and y we used in equation 8 and 9, we can calculate the timestep for the ray
to cross the R lines. We start by using the value of the grid Rgrid:

Rgrid =
√
x2 + y2 =

√
(x0 ± cdt cos θtraj)2 + (y0 ± cdt sin θtraj)2 (11)

By taking the square of this value, we get a quadratic equation:

c2dt2 ± 2cdt(x0 cos θtraj ± y0 sin θtraj) + (R2
0 −R2

grid) = 0 (12)

Using the quadratic formula, we get the solution:

dt =
1

c

(
± x0 cos θ ± y0 sin θ

)
± 1

c

√
R2
grid + (x0 cos θ + y0 sin θ)2 −R2

0 (13)

2.3 2D dt value

Note that having calculated the dt values for the ray to cross the Rgrid and θgrid, then the algorithm
chooses the smallest positive value.

The above equations change once we consider the ray in a 3D capsule.

2.4 Moving the algorithm to 3D

For a 3D capsule, we add a φ angle to our grid to extend it in the x− y− z coordinates. Note that φ has
values between [0,2π]. The 3D grid looks like this:

Figure 5: The Odin capsule extended to 3D.

For the purposes of 3D, we consider the following equations of motion for the ray’s trajectory:

x = x0 ± cdt cos θtraj sinφtraj (14)

4

y = y0 ± cdt sin θtraj sinφtraj (15)

z = z0 ± cdt cosφtraj (16)

Note that once again, we only need consider the R crossing and θ crossing of the rays in the grid - since
the φ component of the grid is merely an extrapolation of the original R − θ or x− y grid. Having said
that, the R component of the grid, considers the x−y−z components and will form several shells around
the center of the capsule. The algorithm can track when the rays intersect these R-shells. We also need
to track the θ intersections of the rays, and this is done as a projection onto the 2D grid. Using the new
equations of motion for the rays ~v(x, y, z, θ, φ), we can see when the ray crosses these θ lines. This is
described in more detail below:

2.4.1 3D θ crossing

Similarly to the 2D version, we consider the gradient of the Odin capsule defined by the θ vectors:

mθ = tan θgrid (17)

And to derive the value for the timestep dt, we re-arrange the following equation:

mθ =
y

x
=
y0 ± cdt sin θtraj sinφtraj
x0 ± cdt cos θtraj sinφtraj

(18)

This gives the solution:

dt =
y0 ±mx0

c(m cos θtraj sinφtraj ± sin θtraj sinφtraj)
(19)

2.5 3D R crossing

Start off with the following definition:

R2
grid = (x0 ± cdt cos θtraj sinφtraj)

2 + (y0 ± cdt sin θtraj sinφtraj)
2 + (z0 ± cdt cosφtraj)

2 (20)

and we define R0 as,

R0 =
√
x20 + y20 + z20 . (21)

and r0 as:
r0 = ±x0 cos θtraj sinφtraj ± y0 sin θtraj sinφtraj ± z0 cosφtraj (22)

Once again, we can re-arrange this equation as a quadratic:

c2dt2 ± 2cdtr0 + (R2
0 −R2

grid) = 0, (23)

and solve for dt:

dt =
1

c
(r0) ± 1

c

√
R2
grid −R2

0 + r20 (24)

2.6 Algorithm Summary

These are the steps the algorithm takes:

1. User chooses wavelength for incoming rays

2. From the Odin output files, a refractive index profile is generated for the capsule

3. User chooses initial positions (x, y, z) and angles of incidence (θtraj , φtraj) for a specified number
of rays

4. Initial position of ray is located within the grid, by using a scanning routine

5. With the initial “cooridnates” of the ray, then calculate time for ray to cross cell boundaries - choose
shortest option

• Update coordinates

• Apply coordinates to calculate refractive index of cell

• Apply Snell’s law to calculate new angle of trajectory of Ray

6. Repeat above steps until Ray has left the capsule

5

3 Results

Having gotten the algorithm to a place where I am fairly happy with it, here are the results of the
algorithm working on an Odin implosion simulation, at various stages of it’s progression. Firstly, I
present the 2D results, and then the 3D results, and how an X-Ray radio-graph is likely to look.

3.1 2D Results

Figure 6: A series of 50 incoming rays travelling through the Odin grid at a range of initial positions and
angles of incidence ranging from 30◦ and 40◦. Note that the rays are reflected at the critical surface of
teh target.

Figure 7: A zoomed section of Figure 6 showing that the algorithm is picking the crossing points of the
grid for the rays trajectories.

3.2 3D Results - Initial Test

The next step in the progression of the algorithm was to replicate the 2D results but on a 3D grid. The
following Figure shows this result:

6

Figure 8: A 3D image of the results shown in Figure 6. This was an initial test case to ensure that the
3D version of the algorithm was working as expected. As you can see, the results are similar. Note that
the incoming rays are shown in green.

Figure 9: A different angle of Figure 8.

Figure 10: A different angle of Figure 8.

7

3.3 3D Results - Full

Having successfully tested the 3D algorithm’s ability to replicate the 2D results, I moved on to using the
algorithm with a range of z for the initial positions of the rays. The results are shown below:

Figure 11: The 3D result of a plane (fixed x) of rays with wavelength 354nm incoming into an Odin
synthetic capsule.

Figure 12: A different angle of Figure 11.

Figure 13: A different angle of Figures 11 and 12.

8

	Introduction
	The Algorithm
	2D crossing
	2D R crossing
	2D dt value
	Moving the algorithm to 3D
	3D crossing

	3D R crossing
	Algorithm Summary

	Results
	2D Results
	3D Results - Initial Test
	3D Results - Full

